
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Alessandro Gambirasio
Technical Account Manager
Amazon Web Services

Serverless APIs on AWS
Key services and best practices

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SERVICES (ANYTHING)

Changes in
data state

Requests to
endpoints

Changes in
resource state

EVENT SOURCE FUNCTION

Node.js
Python
Java
C#
Go

Serverless applications

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using AWS Lambda

Bring your own code
• Node.js, Java, Python,

C#, Go
• Bring your own libraries

(even native ones)

Simple resource model
• Select power rating from

128 MB to 3 GB

• CPU and network

allocated proportionately

Flexible use
• Synchronous or

asynchronous

• Integrated with other

AWS services

Flexible authorization
• Securely grant access to

resources and VPCs

• Fine-grained control for

invoking your functions

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Synchronous
(push)

Asynchronous
(event)

Stream-based

Amazon
API Gateway

AWS Lambda
function

Amazon
DynamoDBAmazon

SNS

/order

AWS Lambda
function

Amazon
S3

reqs

Amazon
Kinesis

changes

AWS Lambda
service

function

Lambda execution model

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Understanding the function lifecycle

Yes No

Is there an active container
available for this Lambda

function that isn’t busy
processing another event?

Active Function
Containers (Warm)

New Function Container
(Cold)

AWS
Lambda

AWS Lambda
Code Store

After new function container is started:
Deployment package is downloaded
Lambda runtime environment is
initialized

Event

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Handler() function
Function to be executed
upon invocation

Event object
Data sent during
Lambda Function
Invocation

Context object
Methods available to
interact with runtime
information

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Understanding Lambda concurrency

Stream-based event sources for Lambda functions that process
Kinesis or DynamoDB streams the number of shards is the unit of
concurrency.

Event sources that aren't stream-based – each published event is a
unit of work, in parallel, up to your account limits. Therefore, the
number of events (or requests) these event sources publish influences
the concurrency.

https://docs.aws.amazon.com/lambda/latest/dg/scaling.html

events (or requests) per second * function duration

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Understanding Lambda concurrency

gambiraa$aws lambda get-account-settings

{
"AccountLimit": {

"CodeSizeUnzipped": 262144000,
"UnreservedConcurrentExecutions": 900,
"ConcurrentExecutions": 1000,
"CodeSizeZipped": 52428800,
"TotalCodeSize": 80530636800

},
"AccountUsage": {

"FunctionCount": 2,
"TotalCodeSize": 11694

}
}

Account Level

Lambda Function Level

A wrong concurrency configuration may impact the proper execution
of other functions in the same account and cause throttling.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda permissions model

Security controls for execution and invocation:

Execution policies:
• Define what AWS resources/API calls

can this function access via IAM
• Used in streaming invocations
• E.g. “Lambda function A can read from

DynamoDB table users”
Function policies:
• Used for sync and async invocations
• E.g. “Actions on bucket X can invoke

Lambda function Z"
• Resource policies allow for cross

account access

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda functions must be idempotent

Invocations occur at least once in response to an event and
functions must be idempotent to handle this.

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

If your function is given the same input (event) multiple times,
the function MUST produce the same result.

Use a unique ID in the event like:

Kinesis: Records[].eventID
SNS: Records[].Sns.MessageId
API Gateway: requestContext.requestId
Scheduled CloudWatch Event: id

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fine-Grained Pricing

Buy compute time in 100ms increments

Lambda exposes only a memory control, with the % of
CPU core and network capacity allocated to a function
proportionally.

Is your code CPU, Network or memory-bound? If so, it
could be cheaper to choose more memory.

> Memory > Cores

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fine-Grained Pricing

128mb 11.722965sec $0.024628
256mb 6.678945sec $0.028035
512mb 3.194954sec $0.026830
1024mb 1.465984sec $0.024638

Stats for Lambda function that calculates 1000 times all
prime numbers <= 1000000

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics and logging are a universal right!

• 6 Built in metrics for Lambda
• Invocation Count, Invocation duration, Invocation errors,

Throttled Invocation, Iterator Age, DLQ Errors

• 7 Built in metrics for API-Gateway
• API Calls Count, Latency, 4XXs, 5XXs, Integration Latency,

Cache Hit Count, Cache Miss Count
• Error and Cache metrics support averages and percentiles

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics and logging are a universal right!

• API Gateway Logging
• 2 Levels of logging, ERROR and INFO
• Optionally log method request/body content
• Set globally in stage, or override per method

• Lambda Logging
• Logging directly from your code with your

language’s equivalent of console.log()
• Basic request information included
• No Latency impact

• Log Pivots
• Build metrics based on log filters
• Jump to logs that generated metrics

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics and logging are a universal right!

Emit your own logs in custom formats – with console.log(specific format)
Process with a Lambda function - parseFormat
Emit Metric to CloudWatch Metrics & send logs to Elasticsearch
Visualize Per Customer Logs or Filter only Error logs

AWS Lambda AWS CloudWatch Logs AWS Lambda

console.log

Amazon ES

CloudWatch
Metrics

Custom metric

Filtered logs

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Environment Variables

• Key-value pairs that you can dynamically pass to
your function.

• Available via standard environment variable
APIs such as process.env for Node.js or
os.environ for Python.

• Useful for creating environments per stage (i.e.
dev, testing, production).

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Systems Manager – Parameter Store

Useful for: centralized environment variables, secrets control, feature flags
• plain-text or encrypted with KMS
• Can send notifications of changes to Amazon SNS/ AWS Lambda
• Secured with IAM and calls recorded in CloudTrail
• Available via API/SDK

from __future__ import print_function

import json

import boto3

ssm = boto3.client('ssm', 'us-east-1')

def get_parameters():

response = ssm.get_parameters(

Names=['LambdaSecureString'],WithDecryption=True

)

for parameter in response['Parameters']:

return parameter['Value']

def lambda_handler(event, context):

value = get_parameters()

print("value1 = " + value)

return value # Echo back the first key value

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Versions and Aliases

Versions = immutable copies of code + properties
Aliases = mutable pointers to versions

ü Rollbacks
ü Staged promotions

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

By default, an alias points to a single Lambda function version.
When the alias is updated to point to a different function version,
incoming traffic in instantly points to the updated version.

To minimize this impact, you can implement the routing-
config parameter of the Lambda alias that allows you to point to two
different versions of the Lambda function and dictate what
percentage of incoming traffic is sent to each version.”

aws lambda update-alias --name alias name --function-name function-name --
routing-config AdditionalVersionWeights={”2"=0.05}

Lambda Alias Traffic Shifting & Safe Deployments

aws lambda create-alias --name alias name --function-name function-name --
function-version 1 --routing-config AdditionalVersionWeights={"2"=0.02}

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Serverless Application Model (SAM)

CloudFormation extension optimized for
serverless

New serverless resource types: functions,
APIs, and tables

Supports anything CloudFormation
supports

Open specification (Apache 2.0)

https://github.com/awslabs/serverless-application-model

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Serverless Application Model (SAM)

AWSTemplateFormatVersion: '2010-09-09’
Transform: AWS::Serverless-2016-10-31
Resources:
GetHtmlFunction:
Type: AWS::Serverless::Function
Properties:
CodeUri: s3://sam-demo-bucket/todo_list.zip
Handler: index.gethtml
Runtime: nodejs4.3
Policies: AmazonDynamoDBReadOnlyAccess
Events:
GetHtml:
Type: Api
Properties:
Path: /{proxy+}
Method: ANY

ListTable:
Type: AWS::Serverless::SimpleTable

Tells CloudFormation this is a SAM
template it needs to “transform”

Creates a Lambda function with the
referenced managed IAM policy,
runtime, code at the referenced zip
location, and handler as defined.
Also creates an API Gateway and
takes care of all
mapping/permissions necessary

Creates a DynamoDB table with 5
Read & Write units

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SAM Local (SAM cli)

CLI tool for local testing of serverless apps

Works with Lambda functions and “proxy-style” APIs

Response object and function logs available on local machine

Uses open source docker-lambda images to mimic Lambda’s
execution environment:

• Emulates timeout, memory limits, runtimes
• Does not emulate CPU limits
• Partial API Gateway emulation (proxy calls)

https://github.com/awslabs/aws-sam-cli

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Introducing Amazon API Gateway

Amazon API Gateway is a fully managed service that makes it easy for
developers to create, publish, maintain, monitor, and secure APIs at
any scale:
• Host multiple versions and stages of your APIs
• Create and distribute API Keys to developers
• Throttle and monitor requests to protect your backend
• Leverage signature version 4 to authorize access to APIs
• Request / Response data transformation and API mocking
• Reduced latency and DDoS protection through CloudFront
• Optional Managed cache to store API responses
• SDK Generation for Java, JavaScript, Java for Android, Objective-C

or Swift for iOS, and Ruby
• Swagger support

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda
function

2. Lambda
function invoked

1. API call made
against API Gateway

API clients

Amazon API
Gateway

Lambda
function

Lambda
function

2. API call made directly
against backing AWS service

API clients

Amazon API
Gateway

API clients

Amazon
S3

Amazon
Kinesis

Amazon
DynamoDB

etc..

2. Step Functions
workflow is executed

1. API call made
against API Gateway

Amazon API
Gateway

API clients

AWS Step
Functions

1. API call made
against API Gateway

Amazon API Gateway patterns

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon API Gateway Security

Several mechanisms for adding Authz/Authn to our API:

• IAM Permissions
• Use IAM policies and AWS credentials to grant access

• Custom Authorizers
• Use Lambda to validate a bearer token(Oauth or SAML as

examples) or request parameters and grant access

• Cognito User Pools
• Create a completely managed user management system

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Create usage plans to control:

• Throttling — overall request rate (average requests per
second) and a burst capacity

• Quota — number of requests that can be made per day, week,
or month

• API/stages — the API and API stages that can be accessed

Usage Plans in API gateway

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Custom domains

Run your APIs within your own DNS zone
Recommended for supporting multiple versions

api.tampr.com/v1 -> restapi1
api.tampr.com/v2 -> restapi2

Support for cross-region redundancy with regional API endpoints

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

API Gateway Stage Variables

• Stage variables act like environment variables

• Use stage variables to store configuration values

• Stage variables are available in the $context object

• Values are accessible from most fields in API Gateway

• Lambda function ARN

• HTTP endpoint

• Custom authorizer function name

• Parameter mappings

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Stage Variables and Lambda Aliases

Using Stage Variables in API Gateway together with Lambda
function Aliases you can manage a single API configuration and
Lambda function for multiple environment stages

myLambdaFunction
1
2
3 = prod
4
5
6 = beta
7
8 = dev

My First API
Stage variable = lambdaAlias

Prod
lambdaAlias = prod
Beta
lambdaAlias = beta
Dev
lambdaAlias = dev

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon API Gateway Canary Support

Use canary release deployments to gradually roll out new APIs in
Amazon API Gateway:

• configure percent of traffic to go to a new stage deployment
• can test stage settings and variables
• API gateway will create additional Amazon CloudWatch Logs group

and CloudWatch metrics for the requests handled by the canary
deployment API

• To rollback: delete the deployment or set percent of traffic to 0

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

In event-based architecture with many downstream calls,
timeouts and retries are important to get right. Be aware of
service throttling.

Have no timeouts at all, and a downstream API being down
could hang your whole microservice. Set your maximum
invocation time for Lambda functions and integration timeout
(1–29 s) per method on API gateway.

Limit number of retries and employ exponential backoff to
avoid resource exhaustion and backlog.

Duplicates may happen; code must be idempotent.

Best pract ices recap

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Use synchronous execution when response is needed. The
invoking application is responsible for retries.

Use asynchronous execution when no response is needed.

Create and enable one DLQ per function—SQS or SNS.

Externalize authorization to IAM roles whenever possible.

Externalize configuration. DynamoDB is great for this.

Make sure your downstream setup “keeps up” with Lambda
scaling. Limit concurrency when talking to relational
databases.

Best pract ices recap

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Uses AWS SAM to deploy serverless applications

Supports Lambda Alias Traffic Shifting enabling canaries and
blue|green deployments

Can rollback based on CloudWatch Metrics/Alarms

Pre/Post-Traffic Triggers can integrate with other services (or even
call Lambda functions)

AWS CodeDeploy + Lambda

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CodeDeploy comes with a number of added
capabilities:

• Custom deployment configurations. Examples:
• “Canary 5% for 1 hour”
• “Linear 20% every 1 hour”

• Events via SNS on success/failure/rollback

• Console with visibility on deploy status, history,
and rollbacks.

AWS CodeDeploy + Lambda

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Build and CI/CD

Logging and MonitoringApplications and Deployment

Chalice Framework Serverless Java Container

Serverless Ecosystem

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

See you at the AWS desk.

Alessandro Gambirasio
Technical Account Manager
Amazon Web Services

