
FROM ‘00s TO ‘20s:
FROM RESTful to gRPC

Gianfranco Reppucci

@giefferre Data Engineer

WHAT THIS TALK
IS ABOUT

BEFORE REST

S O A P

Common Object Request
Broker Architecture

Simple Object
Access Protocol

REST: REpresentational State Transfer

REST PRINCIPLES

Extension of the
web resource

concept

Identification of
resources with a
universal syntax

Resource
accessibility via a
universal interface

REST ARCHITECTURAL ELEMENTS

DATA ELEMENTS CONNECTORS COMPONENTS

REPRESENTATIONSURIsRESOURCES

REST CONSTRAINTS

Client - Server Stateless Cacheability

Uniform Interface Layered System Code On Demand

SO, WHAT’S THE
PROBLEM WITH REST?

RELATIONSHIP BETWEEN URIs
AND HTTP VERBS / 1

GET PUT PATCH

POST DELETE

List of URIs (w/other details?) of all
the person items in the database

Replace the entire persons
dataset with a new one

Not generally used
ok...

Add a new person
to the dataset

Delete the entire persons
dataset

https://api.example.com/persons

RELATIONSHIP BETWEEN URIs
AND HTTP VERBS / 2

Retrieve the person matching
the given identifier “123”

Replace the addressed
person with a new one

Update the addressed person
with the given fields

Not generally used
uhm...

Delete the addressed person
from the dataset

https://api.example.com/persons/123

GET PUT PATCH

POST DELETE

RESTful IS EVIL

FULL LIST OF HTTP VERBS

OPTIONS GET POSTHEAD

PUT DELETE CONNECTTRACE

¯_(ツ)_/¯

FULL LIST OF HTTP STATUS CODES / 1

INFORMATIONAL SUCCESS REDIRECTION

100, 101, 102, 103 200, 201, 203, 204,
205, 206, 207, 208,

226

300, 301, 302, 303,
304, 305, 306, 307,

308

FULL LIST OF HTTP STATUS CODES / 1

CLIENT
ERRORS

SERVER
ERRORS

UNOFFICIAL
CODES

400, 401, 402, 403,
404, 405, 406, 407,
408, 409, 410, 411,
412, 413, 414, 415,
416, 417, 418, 421,
422, 423, 424, 426,
428, 429, 431, 451

500, 501, 502, 503,
504, 505, 506, 507,

508, 510, 511

103, 218, 420, 450,
498, 499, 509, 530,
598, many more...

PROBLEMS OF
RESTful APIs

#1
LITTLE AGREEMENT ON WHAT “RESTful” MEANS

#2
REST VOCABULARY IS NOT FULLY SUPPORTED

#3
REST VOCABULARY IS NOT RICH ENOUGH FOR A COMPLETE API

#4
RESTful APIs ARE TIED TO HTTP

H T T P

MOVING FORWARD

JSON - RPC

STATELESS LIGHTWEIGHT TRANSPORT
AGNOSTIC

USES JSON AS
DATA FORMAT

SUPPORTS
NOTIFICATION REQUEST

JSON - RPC : REQUEST

{

"jsonrpc": "2.0",

"method": "DemoRPCService.CreatePerson",

"params": {

"name": "Gianfranco",

"surname": "Reppucci",

"age": 36

},

"id": 1234567

}

JSON - RESPONSE

{

"jsonrpc": "2.0",

"result": {

"id": "bcjsuge8t5ekk4rj6b4g",

"name": "Gianfranco",

"surname": "Reppucci",

"age": 36

},

"id": 1234567

}

JSON - RPC : NOTIFICATION

{

"jsonrpc": "2.0",

"method": "DemoRPCService.CheckForNewPersons"

}

JSON - RPC : ERROR

{

"jsonrpc": "2.0",

"error": {

"code": -32000,

"message": "person: invalid name or surname

given",

"data": null

},

"id": 1234567

}

BATCH REQUESTS

Useful to aggregate
multiple requests

Server is obliged to respond to
every non-Notification request

JSON-RPC ADVANTAGES

Readability Ease of encoding /
decoding

Separation from
transport protocol

JSON-RPC DISADVANTAGES

No binary
encoding

Ease to mess up
method names

github.com/giefferre/jsonrpc-usage-example

MOVING FAST FORWARD

gRPC

Open Source Remote
Procedure Call protocol

Developed initially
at Google

Uses HTTP/2
for transport

Protocol Buffers as
Interface Description Language

gRPC: PRINCIPLES

Services, not Objects
Messages, not

References

Built-in support for 10
languages across multiple

environments

Blocking /
Non Blocking

(Bidirectional)
Streaming

Cancellation &
Timeout

Flow
Control

Standardized
Status Codes

DEFINITION OF A SAMPLE SERVICE / 1

message Person {

 string id = 1; // Unique ID for this person.

 string name = 2;

 string surname = 3;

 uint32 age = 4;

}

DEFINITION OF A SAMPLE SERVICE / 2

message CreatePersonArgs {

 string name = 1;

 string surname = 2;

 uint32 age = 3;

}

message ReadPersonArgs {

 string id = 1;

}

DEFINITION OF A SAMPLE SERVICE / 3

service DemoRPCService {

 rpc CreatePerson (CreatePersonArgs) returns (Person) {}

 rpc ReadPerson (ReadPersonArgs) returns (Person) {}

}

WRITING A SERVER IN GO / 1

type demoRPCServer struct {
...

}

func (s *demoRPCServer) CreatePerson
(ctx context.Context, args *CreatePersonArgs) (*Person, error) {
...

}

func (s *demoRPCServer) ReadPerson
(ctx context.Context, args *ReadPersonArgs) (*Person, error) {
...

}

WRITING A SERVER IN GO / 2

func main() {
listener, err := net.Listen("tcp", ":1234")

if err != nil {
log.Fatalf("failed to listen: %v", err)

}

grpcServer := grpc.NewServer()
RegisterDemoRPCServiceServer(grpcServer, &demoRPCServer{})

grpcServer.Serve(listener)
}

WRITING A CLIENT IN PYTHON

 channel = grpc.insecure_channel('localhost:6000')
 client = rpcservice.DemoRPCServiceStub(channel)

 new_person = client.CreatePerson(
 pb.CreatePersonArgs(
 name='John',
 surname='Doe',
 age=36,
)
)

github.com/giefferre/grpc-usage-example

CONCLUSIONS

REST concepts are solid,
RESTful implementations

aren’t

*RPC alternatives
are valid

You can take advantages of
some REST concepts when
developing *RPC services

JSON-RPC and gRPC are
modern and they can be

pretty powerful

JOIN US
careers.cubeyou.com

THANK YOU

Gianfranco Reppucci

@giefferre Data Engineer

